产品名称: SRT1720 产品别名: SRT1720 HCI

生物活性:					
Description	SRT1720 HCI 是一种选择性的 SIRT1 激活剂,无细胞试验中 EC50 为 0.16 µM,对 SIRT2 和 SIRT3 的作用				
Description	弱 230 倍以上。				
	SIRT1				
IC ₅₀ & Target	(Cell-free assay)				
	0.16 μM(EC50)				
In Vitro	SRT1720 抗最近的乙酰化酶同系物 SIRT2 (EC1.5 为 37 µ M)和 SIRT3 (EC1.5 > 300 µ M)的最大激活率达				
	781%。SRT1720 在氨基末端催化区的变构位点结合到 SIRT1 酶-肽底物复合物上,降低乙酰化底物的米氏				
	常数值。用 SRT1720 处理一周后,饲喂的葡萄糖水平降低,处理三周后,饲喂的葡萄糖水平进一步降低,				
	持续处理 10 周。Rosiglitazone 激活 PPAR γ ,已经用于治疗 II 型糖尿病;而与 Rosiglitazone 相比,在进行				
	腹膜葡糖糖耐量试验时,用 SRT1720 处理导致葡萄糖明显降低。SRT1720 对用无糖食物喂养的鼠没有作用				
	效果,显示出药理学 SIRT1 的激活不会产生低血糖。与 Rosiglitazone 相似,用 SRT1720 处理 4 周,明显				
	降低高胰岛素血症,使升高的胰岛素水平恢部分复正常 SRT1720 处理腓肠肌,通过测定柠檬酸合酶活性发				
	现线粒体各项能力上升 15%。[1]高浓度 SRT1720 (15 μM)诱导正常细胞活力轻微下降,约 10-20%。				
	SRT1720 明显抑制 VEGF 依赖的 MM 细胞迁移。[2]				
	在 DIO 鼠中实施摄热量限制包括改善胰岛素敏感性,使葡萄糖和胰岛素水平维持正常,及提高线粒体能力后,				
	可观察到 SRT1720 模拟一些功能。此外,在饮食导致的肥胖和遗传肥胖鼠中,SRT1720 提高胰岛素敏感性,				
In Vivo	降低血浆葡萄糖,及提高线粒体能力。因此,SRT1720 是有前途的新型治疗剂,可用于治疗像Ⅱ型糖尿病之				
	类的疾病。与提高的葡萄糖耐量相一致,在SRT1720处理的fa/fa 鼠中,维持血糖正常所需的葡萄糖注入率(GIR)				
	大约为 35%, 全部的葡萄糖处理效率提高大约为 20%。[1] SRT1720 作用于动物肿瘤模型研究时, 抑制多发				
		RT1720 提高 Bortezo	mib 或 Dexamethasor	ne 的毒性。[2]	
	In Vitro:				
	DMSO: 38 mg/mL (75.09 mM); Water Insoluble; Ethanol Insoluble * ">" means soluble, but saturation unknown.				
	* "≥" means solubl		nown.		
		Solvent Mass Concentration	1 mg	5 mg	10 mg
Solvent&Solubility	Preparing	1 mM	1.9762 mL	9.8810 mL	19.7621 mL
Conventacionability	Stock Solutions	5 mM	0.3952 mL	1.9762 mL	3.9524 mL
	8//25	10 mM	0.1976 mL	0.9881 mL	1.9762 mL
		50 mM	0.0395 mL	0.1976 mL	0.3952 mL
	*请根据产品在不				, 请分装保存, 避免反
	复冻融造成的产品失效。				
	储备液的保存方式和期限 -80°C, 6 months; -20°C, 1 month。 -80°C 储存时, 请在 6 个月内使用, -20°C				
	储存时,请在 1 个月内使用。				
Doference	[1] Milne JC, et al. Nature. 2007, 450(7170), 712-716.				
References	[2] Chauhan D, et al. Br J Haematol. 2011, 155(5), 588-598.				
1	细胞实验	: [2]			
		: [2] s: 人类血管内皮细胞	(HUVECs)		
	Cell lines		(HUVECs)		

	Method: 使用 Transwell 迁移实验测定迁移率。通过基底膜的毛细血管样管结构形成试剂盒检		
	外血管生成。用于内皮血管生成实验,从 Clonetics 获得的人类血管内皮细胞(HUVEC),保存在		
	含 5% FBS 的内皮细胞生长培养基中。使用台盼蓝拒染法测定 HUVEC 细胞活力,观察到用		
	SRT1720 处理的细胞死亡率小于 5%。		
	动物实验: [1]		
Animal Administration	nal Administration Animal Models: 携带 MM.1S 细胞的 Chase-SCID 鼠[1]		
	Formulation: 20% PEG400/0.5% Tween-80/79.5% 去离子水		
	Dosages: 200 mg/kg		
	Administration: 口服处理		
	SIRT1 荧光偏振实验: [1]		
	在 SIRT1 FP 试验中,使用从 p53 序列中得到的含 20 个氨基酸的肽段		
	(Ac-Glu-Glu-Lys(biotin)-Gly-Gln-Ser-Thr-Ser-Ser-His-Ser-Lys(Ac)-Nle-Ser-Thr-Glu-Gly-Lys(MR12		
	1 或 Tamra)-Glu-Glu-NH2)。肽段 N 端与生物素相连,C 端用荧光标记修饰。监测酶活的反应是酶		
Kinase Assay	活偶联反应,第一步反应为 SIRT1 催化的脱乙酰反应,第二步反应为在新暴露的赖氨酸残基处进行		
	胰蛋白酶催化的分裂。为了突出底物和产物的多种区别,加入链酶亲和素,反应终止。FP测试的		
	敏感性可用来鉴定 SRT1720。进行荧光偏振反应环境如下: 0.5 μM 肽底物, 150 μM βNAD+, 0-10		
	nM SIRT1, 25 mM Tris-醋酸盐(pH 为 8), 137 mM Na-Ac, 2.7 mM K-Ac, 1 mM Mg-Ac, 0.05%		
	Tween-20, 0.1% Pluronic F127, 10 mM CaCl ₂ , 5 mM DTT, 0.025% BSA, 及 0.15 mM 烟碱。 反应		
	在 37℃ 温育,加入烟碱终止反应,加入胰蛋白酶分裂脱乙酰底物。加入链酶亲和素在 37℃ 温育。		
	在 650 nm 和 680nm 处测定荧光偏振。[1]		
References	[1] Milne JC, et al. Nature. 2007, 450(7170), 712-716.		
	[2] Chauhan D, et al. Br J Haematol. 2011, 155(5), 588-598.		

源叶生物