干酪素 精制级,92%,牛奶提取

Casein

源叶
S12002
9000-71-9
品牌 货号 产品规格 价格(RMB) 库存(上海) 北京 武汉 南京 购买数量
源叶 S12002-25g 精制级,92%,牛奶提取 ¥45.00元 >10 4 - 2
源叶 S12002-100g 精制级,92%,牛奶提取 ¥100.00元 >10 2 5 8
源叶 S12002-500g 精制级,92%,牛奶提取 ¥260.00元 >10 5 >10 2
产品介绍 参考文献(73篇) 质检证书(COA) 摩尔浓度计算器 相关产品

产品介绍

干酪素性状:白色无定形粉末或颗粒。是一种含磷复合蛋白。经电泳分析有不少于20中的磷蛋白组分,主要成分为a-酪蛋白和b-酪蛋白。干粉无臭,无味。有吸湿性。干燥时性质稳定,潮湿时易变坏。溶于碱性水溶液,溶于浓盐酸呈浅紫色,几乎不溶于水和非极性有机溶剂。相对密度1.25~1.31,等电点4.7。
制备方法:(1)新鲜牛奶脱脂,加酸(乳酸、乙酸、盐酸或硫酸),将pH调至4.7,使干酪素微胶粒失去电荷而凝固沉淀。用这种方法得到的干酪素称为酸酪蛋白。(2)将牛奶与粗制凝乳酶作用,形成凝固沉淀物,称为粗制凝乳酶酪蛋白,呈白色粒状。凝乳酶酪蛋白比酸酪蛋白的灰分含量高。
干酪素用途:本身可用于生化研究,配制生物培养基,也可作为增稠剂、乳化剂、稳定剂等,可用于食品当中。由其作为原料生产的其他产品有:水解干酪素用于细菌培养;水解酪蛋白(0.2%),用于鸡胚、鼠肾等一般细胞的培养;水解酪蛋白琼脂用于测定微生物对抗菌药物的敏感性,是血琼脂和巧克力琼脂的基础;胰酪胨是一种常用的细菌培养基的成分。
干酪素毒性:天然食品,无毒。
 
外观: 白色至亮黄色固体
溶解性: 10mg/ml  25%氨水
储存条件: RT
注意: 部分产品我司仅能提供部分信息,我司不保证所提供信息的权威性,仅供客户参考交流研究之用。

参考文献(73篇)

68. [IF=8.5] Xiya Lou et al."Supramolecular recognition, fluorescence, and sensing: Two trilobal dyes and casein in milk."FOOD CHEMISTRY.2025 May;473:143114 67. [IF=5.7] Ruiyi Cai et al."Decoding Allergenicity Modulation in Cold Argon Plasma-Treated Casein: A Multi-Omics Exploration."JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY.2025;XXXX(XXX):XXX-XXX 66. [IF=8.5] Mohamed Salama et al."Insight into dairy casein implications that enhance egg white proteins' thermodynamic and microrheological functions."FOOD CHEMISTRY.2025 Jul;481:144054 65. [IF=7] Xinyue Diao et al."Animal-derived and plant-derived proteins in diets have different in vitro digestive characteristics and bioaccessibility."FOOD RESEARCH INTERNATIONAL.2025 Apr;:116377 64. [IF=7] Yu Zhang et al."Milk peptides alleviate irritable bowel syndrome by suppressing colonic mast cell activation and prostaglandin E2 production in mice."FOOD RESEARCH INTERNATIONAL.2025 Apr;:116470 63. [IF=7.7] Wen-Xiu Zhi et al."Rapid and accurate quantification of trypsin activity using integrated infrared and ultraviolet spectroscopy with data fusion techniques."INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES.2024 Oct;278:135017 62. [IF=7.7] Bao-Rong Wang et al."Adaptability to the environment of protease by secondary structure changes and application to enzyme-selective hydrolysis."INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES.2024 Oct;278:134969 61. [IF=8.3] Shengnan Hu et al."Construction of Metal–Organic Framework-Based Heterogeneous Pepsin and Its Degradation Performance and Mechanism for Phthalic Acid Esters."ACS Applied Materials & Interfaces.2024;16(30):39241–39250 60. [IF=4.5] Chaodong Song et al."A Comparative Transcriptome Analysis Unveils the Mechanisms of Response in Feather Degradation by Pseudomonas aeruginosa Gxun-7."Microorganisms".2024 Apr;12(4):841 59. [IF=10.7] Ying Wang et al."Non-covalent interactions of roselle anthocyanins with milk proteins and egg white protein."FOOD HYDROCOLLOIDS".2024 Sep;154:110125 58. [IF=5.2] Wenjie Shen et al."A Magnetic Beads-Based Sandwich Chemiluminescence Enzyme Immunoassay for the Rapid and Automatic Detection of Lactoferrin in Milk."Foods".2024 Jan;13(6):953 57. [IF=8.1] Lu Zhang et al."Isolation and identification of milk-clotting proteases from Prinsepia utilis Royle and its application in cheese processing."FOOD RESEARCH INTERNATIONAL".2024 May;183:114225 56. [IF=8.8] Xintong Han et al."Microfluidic paper-based analysis device applying black phosphorus nanosheets@MWCNTs-COOH: A portable and efficient strategy for detection of β-Lactoglobulin in dairy products."FOOD CHEMISTRY".2024 Jul;446:138844 55. [IF=6] Siqi Yang et al."Improved protective and controlled releasing effect of flaxseed oil microcapsules with glycosylated casein as wall materials."LWT-FOOD SCIENCE AND TECHNOLOGY.2024 Jan;191:115687 54. [IF=10.7] Feng Yan et al."Mechanism study on the effect of heat shock on the functional characteristics of soybean protein isolate by regulating the change of endogenous enzyme activity in soybeans."FOOD HYDROCOLLOIDS.2023 Dec;:109625 53. [IF=8.8] Xianlong Zhang et al."A bifunctional core–shell gold@Prussian blue nanozyme enabling dual-readout microfluidic immunoassay of food allergic protein."FOOD CHEMISTRY.10.1016/j.foodchem.2023.137455 52. [IF=10.7] Li Wang et al."Casein nanoparticles as oral delivery carriers for improved bioavailability and hypoglycemic activity of apigenin.."FOOD HYDROCOLLOIDS.2024 Jan;146:109194 51. [IF=9.336] Xue Li et al."Effects of homogeneous and ultrasonic treatment on casein/phosphatidylcholine complex-emulsions: Stability and bioactivity insights."ULTRASONICS SONOCHEMISTRY.2023 Jul;97:106457 50. [IF=0] Wenyu Wei et al."Luminescent protein–rare earth fluoride nanoflowers."Materials Advances.2023 Mar;: 49. [IF=11.504] Ying Kuang et al."Schiff base type casein-konjac glucomannan conjugates with improved stability and emulsifying properties via mild covalent cross-linking."FOOD HYDROCOLLOIDS.2023 Aug;141:108733 48. [IF=9.231] Jianyong Zhang et al."Stability of glycosylated complexes loaded with Epigallocatechin 3-gallate (EGCG)."FOOD CHEMISTRY.2023 Jun;410:135364 47. [IF=7.425] Lin Chen et al."Effects of different phenolic compounds on the interfacial behaviour of casein and the action mechanism."FOOD RESEARCH INTERNATIONAL.2022 Dec;162:112110 46. [IF=4.132] Dongwei Wei et al."Development of a Method for Fast Assessment of Protein Solubility Based on Ultrasonic Dispersion and Differential Centrifugation Technology."ACS Omega.2022;7(35):31338–31347 45. [IF=6.064] Hao Chen et al."Overexpression of Bacillus circulans alkaline protease in Bacillus subtilis and its potential application for recovery of protein from soybean dregs.."Frontiers in Microbiology.2022 Aug;13:968439-968439 44. [IF=9.231] Jianhua Zeng et al."Insight into the molecular-level details of αs1 casein interactions with IgG: Combining with LC-MS/MS and molecular modelling techniques."FOOD CHEMISTRY.2023 Jan;399:133987 43. [IF=3.654] Lin Chen et al."Effects of casein on the stability, antioxidant activity, and bioavailability of lotus anthocyanins."JOURNAL OF FOOD BIOCHEMISTRY 42. [IF=5.561] Wenxia Zhang et al."Antioxidant Activities of Aqueous Extracts and Protein Hydrolysates from Marine Worm Hechong (Tylorrhynchus heterochaeta)."Foods.2022 Jan;11(13):1837 41. [IF=6.475] Lei Cui et al."Antioxidant peptides derived from hydrolyzed milk proteins by Lactobacillus strains: A BIOPEP-UWM database-based analysis."FOOD RESEARCH INTERNATIONAL. 2022 Jun;156:111339 40. [IF=11.236] Ziqing Huang et al."Influence of protein configuration on aggregation kinetics of nanoplastics in aquatic environment."WATER RESEARCH. 2022 Jul;219:118522 39. [IF=1.713] Kai Yuan et al."Effect of bacterial cellulose nanofibers incorporation on acid-induced casein gels: microstructures and rheological properties."Int J Food Eng. 2021 Dec;: 38. [IF=10.435] Hong Liping et al."A UCMPs@MIL-100 based thermo-sensitive molecularly imprinted fluorescence sensor for effective detection of β-lactoglobulin allergen in milk products."J Nanobiotechnol. 2022 Dec;20(1):1-12 37. [IF=2.097] Zhang Xuping et al."Aptamer labeled nanozyme-based ELISA for ampicillin residue detection in milk."Chem Pap. 2022 Jan;:1-9 36. [IF=6.543] Wu Ziyuan et al."Black Truffle Extract Exerts Antidiabetic Effects through Inhibition of Inflammation and Lipid Metabolism Regulation."Oxid Med Cell Longev. 2022;2022:6099872 35. [IF=4.142] Zhang Hao et al."A portable personal glucose meter method for enzyme activity detection and inhibitory activity evaluation based on alkaline phosphatase-mediated reaction."Anal Bioanal Chem. 2021 Apr;413(9):2457-2466 34. [IF=4.952] Ziyuan Wu et al."Nutritional value and antioxidant activity of Chinese black truffle (Tuber indicum) grown in different geographical regions in China."Lwt Food Sci Technol. 2021 Jan;135:110226 33. [IF=6.953] Bin Yu et al."The effects of acetylated distarch phosphate from tapioca starch on rheological properties and microstructure of acid-induced casein gel."Int J Biol Macromol. 2020 Sep;159:1132 32. [IF=7.46] Yaqin Zhang et al."A smartphone-integrated colorimetric sensor of total volatile basic nitrogen (TVB-N) based on Au@MnO2 core-shell nanocomposites incorporated into hydrogel and its application in fish spoilage monitoring."Sensor Actuat B-Chem. 2021 May;3 31. [IF=7.514] Zi-Tao Zhong et al."Quantitative analysis of various targets based on aptamer and functionalized Fe3O4@graphene oxide in dairy products using pregnancy test strip and smartphone."Food Chem. 2021 Aug;352:129330 30. [IF=7.514] Wei-Yu Mu et al."Determination of melamine and melamine–Cu(II) complexes in milk using a DNA-Ag hydrocolloid as the sensor."Food Chem. 2020 May;311:125889 29. [IF=9.147] Xiaofei Li et al."Structural characteristics of gluconic acid δ-lactone induced casein gels as regulated by gellan gum incorporation."Food Hydrocolloid. 2021 Nov;120:106897 28. [IF=3.365] Xiuxia Sun et al."Immobilized trypsin on hydrophobic cellulose decorated nanoparticles shows good stability and reusability for protein digestion."Anal Biochem. 2015 May;477:21 27. [IF=3.72] Shaomin Li et al."Polydopamine-Mediated Carrier with Stabilizing and Self-Antioxidative Properties for Polyphenol Delivery Systems."Ind Eng Chem Res. 2018;57(2):590–599 26. [IF=5.479] Shi Menglan et al."Aptamer based fluorometric β-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots."Microchim Acta. 2018 Jan;185(1):1-8 25. Lu, Dai, et al. "A critical factor for quantifying proteins in unmodified gold nanoparticles-based aptasensing: The effect of pH." Chemosensors 8.4 (2020): 98.https://doi.org/10.3390/chemosensors8040098 24. Shi, Menglan, et al. "Aptamer based fluorometric β-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots." Microchimica Acta 185.1 (2018): 1-8.https://doi.org/10.1007/s00604-017-2569-5 23. Mu, Wei-Yu, et al. "Determination of melamine and melamine–Cu (II) complexes in milk using a DNA-Ag hydrocolloid as the sensor." Food chemistry 311 (2020): 125889.https://doi.org/10.1016/j.foodchem.2019.125889 22. Li, Yong, et al. "Formation and evaluation of casein-gum arabic coacervates via pH-dependent complexation using fast acidification." International journal of biological macromolecules 120 (2018): 783-788.https://doi.org/10.1016/j.ijbiomac.2018.08.145 21. 郑罗燕,于滨,崔波,刘鹏飞.乙酰化二淀粉磷酸酯对酪蛋白酸凝胶理化特性的影响[J].粮食与油脂,2021,34(01):59-62. 20. 张梦媛. 豆粕固态发酵及其蛋白乳化特性研究[D].湖北工业大学,2020. 19. 袁源,刘洋洋,龚霄,周伟,李积华.不同炙法加工对大腹皮的抗氧化性比较及成分分析[J].时珍国医国药,2020,31(08):1870-1873. 18. 王鑫纯, 徐伟, 蒋建新,等. 野皂荚多糖氧化降解产物的体外代谢过程研究[J]. 林产化学与工业, 2020(3). 17. 吴雄, 夏建开, 苗艳丽,等. 星点设计-效应面法优化复合酶解酪蛋白制备抗凝血肽的工艺研究[J]. 药学研究, 2019, 038(006):P.336-342. 16. 宋雅芸, 罗仓学, 邵明亮. 马铃薯渣发酵生产活性蛋白饲料的研究[J]. 食品工业科技, 2016, 37(24):186-192. 15. 罗仓学, 宋雅芸, 邵明亮. 马铃薯渣发酵产活性蛋白饲料培养基优化[J]. 陕西科技大学学报, 2017, 35(003):127-131. 14. 杨野, 李佳莹, 张曼,等. 混菌发酵纳豆的工艺研究[J]. 中国酿造, 2019. 13. 赵倩如, 朱丽英, 赵权宇,等. 高效液相色谱法测定乳清蛋白中的α乳白蛋白和β乳球蛋白及其改性降敏[J]. 生物加工过程 2020年18卷4期, 536-543页, ISTIC BP, 2020. 12. 黎芳, 王子靖海, 李欣萍,等. 环境因素对3种功能性蛋白物性的影响[J]. 食品科技, 2018, 043(003):64-68. 11. 黎芳 滕文韶 刘野 等. 3种功能性蛋白对淀粉-面筋重组面团流变学特性及馒头品质的影响[C]// 中国食品科学技术学会第十四届年会暨第九届中美食品业高层论坛. 2020:108-116. 10. 纪晓雯,王志耕,阚文翰,梅林,薛秀恒.酪蛋白铁螯合肽的分离纯化及结构解析[J].食品科学,2018,39(06):63-68. 9. 叶淼, 吴献, 林小栩,等. 采用改良磷钼钨酸-干酪素法测定闽产盐肤木根中总鞣质含量[J]. 辽宁中医药大学学报, 2019, 021(004):77-79. 8. 聂林峰, 黄佳云, 何成华,等. 膜技术富集脉络宁注射液生产废水中小分子药效成分的工艺优化研究[J]. 中草药, 2019, 50(08):65-71+78. 7. 冯涛,张宁,孙力军,王雅玲,洪鹏志,廖建萌,邓旗,叶日英,吴金红,陈康建.纳豆芽孢杆菌固态发酵罗非鱼下脚料过程相关参数变化及产脂肽动力学[J].水产学报,2017,41(06):817-826. 6. 张梦媛, 张雨, 丁常晟,等. 总状毛霉与鲁氏酵母耦合发酵对豆粕营养和风味的增强效应[J]. 食品工业科技, 2020(8):15-20. 5. 苗艳丽, 廖铭能, 杨明珠,等. 壳聚糖-海藻酸钠微球固定化木瓜蛋白酶的工艺研究[J]. 广州化工, 2020, 048(005):85-89. 4. 张诺 柯鼎焜 杜红方 等. 兽用博落回散对饲用酶制剂酶活性的影响[J]. 生物资源 2019 v.41;No.166(02):58-65. 3. 张玉梅 卢红梅 陈莉 等. 光照与否对苦荞芽苗的影响[J]. 食品科技 2018 043(006):183-188. 2. 张捷 牟建楼 张伟 等. 传统纳豆发酵条件的优化[J]. 食品工业 2019 v.40;No.273(06):124-128. 1. 杨丹 王洪礼 马丹宁 王延年.不同发酵条件对淡豆豉中总异黄酮含量及蛋白酶活力的影响[J].中国现代中药 2016 18(07):826-830.

质检证书(COA)

如何获取质检证书(COA)?
请输入货号和一个与之匹配的批号。
例如:
批号:JS298415 货号:S20001-25g
在货品标签上如何找到货号和批号?

摩尔浓度计算器

质量 (mg) = 浓度 (mM) x 体积 (mL) x 分子摩尔量 (g/mol)

=
×
×

相关产品