- 提示:详情请下载说明书。
- 介绍:
耐高温α-淀粉酶采用地衣芽孢杆菌(Bacillus licheniformis)经发酵、提取精制而成。
本品具有良好的耐高温特性。广泛应用于淀粉糖(葡萄糖、饴糖、糊精、果糖、低聚糖)、酒精、啤酒、味精、食品酿造、有机酸、纺织、印染、造纸及其他发酵工业等。能在较高的温度下迅速水解淀粉分子中α-1.4葡萄糖苷键,任意切断成长短不一的短链糊精和少量的低聚糖,从而使淀粉的粘度迅速下降。液化作用时间延长,还会产生少量的葡萄糖和麦芽糖。
温度范围:最适作用温度在90℃以上,95-97℃液化迅速,100℃仍保持相当的活力,早喷射液化时,瞬间温度可达105-110℃。
PH范围:有效PH范围在5.5-8.0,最适PH范围在5.8-6.5。
酶活定义:在70℃、PH6.0条件下,1分钟液化1mg可溶性淀粉成为糊精所需要的酶量,即为1个酶活力单位。
在酒精生产中,以每吨原料加入该酶0.3升左右(2万 u/g),PH6.5-7.0,搅匀以后用泵送入蒸煮锅或连续蒸煮加热器,温度可控制在100±5℃。时间为100分钟,冷却后糖化。
- 外观: 粉末
- 储存条件: 2-8℃
- 注意:部分产品我司仅能提供部分信息,我司不保证所提供信息的权威性,仅供客户参考交流研究之用。
- 52. XIONG, Ke, et al. Preparation of high fischer ratio oligopeptide of chlorella powder using specific enzymatic hydrolysis. Food Science and Technology, 2020. https://doi.org/10.1590/fst.42220
- 51. Liu, Yu Xin, et al. "DNA nanosheet as an excellent fluorescence anisotropy amplification platform for accurate and sensitive biosensing." Talanta 211 (2020): 120730.https://doi.org/10.1016/j.talanta.2020.120730
- 50. Liu, Suwen, et al. "Inhibition of pancreatic α-amylase by Lonicera caerulea berry polyphenols in vitro and their potential as hyperglycemic agents." LWT 126 (2020): 109288.https://doi.org/10.1016/j.lwt.2020.109288
- 49. Lv, Qing-Qing, et al. "Evaluation studies on the combined effect of hydrothermal treatment and octenyl succinylation on the physic-chemical, structural and digestibility characteristics of sweet potato starch." Food chemistry 256 (2018): 413-418.https://do
- 48. Jia, Fengjuan, et al. "Extraction optimization and constipation-relieving activity of dietary fiber from Auricularia polytricha." Food Bioscience 33 (2020): 100506.https://doi.org/10.1016/j.fbio.2019.100506
- 47. Ji, Suping, et al. "Formation, characterization and properties of resveratrol-dietary fiber composites: Release behavior, bioaccessibility and long-term storage stability." LWT 129 (2020): 109556.https://doi.org/10.1016/j.lwt.2020.109556
- 46. Zhang, Lei, et al. "Improvement of the quality and shelf life of wheat bread by a maltohexaose producing α-amylase." Journal of cereal science 87 (2019): 165-171.https://doi.org/10.1016/j.jcs.2019.03.018
- 45. Han, Meijun, et al. "Insights into the effects of caffeic acid and amylose on in vitro digestibility of maize starch-caffeic acid complex." International Journal of Biological Macromolecules 162 (2020): 922-930.https://doi.org/10.1016/j.ijbiomac.2020.06.20
- 44. Guodong Liu, Chao Zhang, Sihan Zhang, Xingxun Liu, Junfei Luo, Hui Gao, Hongcheng Zhang, Haiyan Wei, Simulated oral processing of cooked rice using texture analyzer equipped with multiple extrusion cell probe (TA/MEC), LWT, Volume 138, 2021, 110731, ISSN 0
- 43. Ye, Guangying, et al. "Ethanol production from mixtures of sugarcane bagasse and Dioscorea composita extracted residue with high solid loading." Bioresource technology 257 (2018): 23-29.https://doi.org/10.1016/j.biortech.2018.02.008
- 42. 乐乐,崔鑫儒,赵创谦,李婉麒,陈紫颖,汤柳茜,赖凤羲,艾连中,张汇.青稞多糖对玉米淀粉糊化和流变特性的影响[J].食品与生物技术学报,2020,39(10):73-81.
- 41. 李莹莹,张星启,倪泽平,宋贤良. 酶碱结合法提取菠萝蜜皮中膳食纤维工艺研究[C]. 广东省食品学会.现代食品工程与营养健康学术研讨会暨2020年广东省食品学会年会论文集.广东省食品学会:广东省食品学会,2020:17-22.
- 40. 卜俊芝.混合果蔬酵素中生物活性成分及其应用研究[J].东莞理工学院学报,2020,27(05):90-94.
- 39. 申瑞玲,李佳瑶,朱莹莹,董吉林.燕麦全谷微发酵饮品的研究[J].食品研究与开发,2021,42(02):78-83.
- 38. 胡方洋,张坤生,陈金玉,马葆菁,祁亚男,李芸,唐莉果,邓金香,宋健臣.玉米抗性淀粉的制备及其对肌原纤维蛋白凝胶特性的影响[J].食品研究与开发,2021,42(07):1-6.
- 37. 陈尚龙, 陈安徽, 刘辉,等. 应用消化系统全仿生模型分析酸奶发酵对钙形态的影响[J]. 农业工程学报, 2018, v.34;No.332(05):297-302.
- 36. 陈尚龙, 刘恩岐, 陈安徽,等. 应用体外全仿生模型初步分析2种富硒产品中硒形态及生物可给性[J]. 食品科学, 2018, 039(004):225-232.
- 35. 洪泽翰, 吴婉仪, 李璐,等. 不同大分子乳化剂构建番茄红素纳米乳液的体外消化规律比较[J]. 食品科学, 2019, 40(10):9-15.
- 34. 张玉梅 卢红梅 陈莉 等. 光照与否对苦荞芽苗的影响[J]. 食品科技 2018 043(006):183-188.
- 33. 李鹏冲, 申瑞玲, 章建军,等. 麦麸多酚膳食纤维的提取工艺研究[J]. 食品工业, 2018, 39(12):88-91.
- 32. 姜龙波, 吕静, 张喜文,等. 小米糠膳食纤维复合酶法改性工艺优化[J]. 轻工学报, 2017, 32(005):16-23.
- 31. 辛松林. 川秋葵微粉降血糖活性研究[C]// 第十三届中国西部营养与健康高峰论坛论文集. 2018.
- 30. 彭悦 柴利娜 乔臻然 等. 低脂型膳食纤维发酵香肠的研究[J]. 肉类工业 2019 000(007):1-6.
- 29. 冯雁波, 包怡红. 超微粉碎对松仁膳食纤维体外降血糖、降血脂功能的影响[J]. 食品工业科技, 2016(23):343-347+351.
- 28. 张智, 李晴, 化洪苓,等. 橡子粉酶法制备低聚异麦芽糖的工艺研究[J]. 食品工业科技, 2017(21):158-163+168.
- 27. 申瑞玲, 林娟, 董吉林,等. 黑麦非淀粉多糖的分离纯化[J]. 麦类作物学报, 2014, 34(09).
- 26. 张婷, 李佳瑶, 安双双,等. 高粱抗性糊精的制备工艺优化及结构表征[J]. 食品科技, 2020, v.45;No.342(04):238-243.
- 25. 曾泽生, 朱波, 邓姗. 高抗性淀粉苦荞乳饮料制备工艺研究[J]. 食品与发酵科技, 2016(4):7-11.
- 24. 王秋阳, 付刚, 王超,等. 高压超声波协同改性红松松仁膜衣膳食纤维工艺优化及结构分析[J]. 延边大学农学学报, 2019, 041(002):74-79.
- 23. 余可, 刘磊, 张瑞芬, et al. 预酶解-滚筒干燥加工工艺对全麦片品质的影响[J]. 中国农业科学, 2020, v.53(06):181-193.
- 22. 赵志浩, 刘磊, 张名位,等. 预酶解-挤压膨化对全谷物糙米粉品质特性的影响[J]. 食品科学, 2019, 40(01):116-124.
- 21. 张海芳, 李艳, 韩育梅,等. 酶法改性对马铃薯渣膳食纤维单糖组分及理化性质的影响[J]. 食品研究与开发, 2020, 041(001):60-66.
- 20. 申瑞玲, 张文杰, 董吉林. 酶-热水浸提法提取藜麦麸水溶性非淀粉多糖工艺研究[J]. 轻工学报, 2016, v.31;No.137(01):29-34.
- 19. 刘淑婷, 王颖, 王志辉,等. 超声-微波协同酶法制备芸豆抗性淀粉工艺优化及结构分析[J]. 中国食品学报, 2020, v.20(05):193-201.
- 18. 王迪, 王颖, 张艳莉,等. 芸豆酵素复合发酵工艺优化[J]. 食品与机械, 2019, 035(010):206-209,236.
- 17. 王超, 徐红艳, 杨晰茗,等. 红松松仁膜衣膳食纤维的功能性质[J]. 食品与机械, 2020, 036(003):39-42,68.
- 16. 胡楠楠, 卢敏, 迟燕平. 米糠阿魏酰低聚糖提取工艺优化研究[J]. 食品科技, 2016, 041(011):184-189.
- 15. 迟燕平, 胡楠楠, 姜媛媛,等. 米糠中淀粉脱除工艺优化研究[J]. 食品科技, 2016, 041(010):147-150.
- 14. 阳雁, 李蒙蒙, 孙智达. 环境因素对米糠不溶性膳食纤维吸附蓝莓多酚的影响[J]. 食品工业科技, 2015, 36(018):137-140.
- 13. 杨敏,杨勇,李彬彬,张楠,蒋玉涵,尚柔杉,杨海翌,刘爱平,刘韫涛,李诚.燕麦麸脂肪模拟物应用于发酵香肠的工艺优化及其对发酵香肠品质的影响[J].食品与发酵工业,2017,43(05):129-137.
- 12. 王燕. 正交试验优化小米饮料工艺[J]. 粮食与油脂, 2018, 31(10):53-56.
- 11. 李长见, LI, Chang-jian,等. 抗氧化小米发酵饮料的研制[J]. 饮料工业, 2017, 06(v.20;No.175):30-33.
- 10. 谢岩黎, 王晨, 郝振宇. 抗性淀粉与小麦粉共混体系黏弹性的研究[J]. 中国粮油学报, 2018, v.33(02):33-38.
- 9. 谢岩黎, 南永远, 郝振宇. 微波湿热-循环冷冻对小麦淀粉结晶特性的影响[J]. 中国粮油学报, 2017, 32(010):49-53.
- 8. 李艳, 张海芳, 韩育梅,等. 复合酶法提高马铃薯渣中可溶性膳食纤维含量的研究[J]. 食品科技, 2018, 43(12):211-217.
- 7. 包怡红 郭阳. 响应面试验优化超声波辅助水酶法提取松籽油工艺及其氧化稳定性[J]. 食品科学 2016 37(22).
- 6. 包怡红 冯雁波. 响应面试验优化红松松仁膳食纤维制备工艺及其理化性质分析[J]. 食品科学 2016(14期):11-17.
- 5. 李长见. 双酶法玉米汁饮料的研制[J]. 农产品加工 2018 No.453(07):22-25+28.
- 4. 刘静怡 丁城 周梦舟 等. 双酶法分离提取米糠膳食纤维的研究[J]. 食品科技 2017(10):179-184.
- 3. 杨敏 杨勇 吴世涛 李彬彬 张楠 张学广 侯青 陈洪 林德荣 刘爱平 刘韫涛 李健 林燕.利用燕麦麸脂肪模拟物制作的发酵香肠对大鼠血脂水平及血清抗氧化性能的影响[J].食品科学 2018 39(05):239-246.
- 2. 曲鹏宇 李志江 李丹 等. 乳熟中期水稻茎中水溶性膳食纤维提取工艺研究[J]. 黑龙江八一农垦大学学报 2020 032(002):37-42 118.
- 1. 刘淑婷 王颖 王志辉 等. 不同品种芸豆淀粉及其抗性淀粉结构和物化特性比较[J]. 中国食品学报 2020(4).
输入产品批号:
本计算器可帮助您计算出特定溶液中溶质的质量、溶液浓度和体积之间的关系,公式为:
质量 (mg) = 浓度 (mM) x 体积 (mL) x 分子摩尔量 (g/mol)